Paper Reading AI Learner

Image Inpainting with Contextual Reconstruction Loss

2020-11-25 15:45:12
Yu Zeng, Zhe Lin, Huchuan Lu, Vishal M. Patel

Abstract

Convolutional neural networks (CNNs) have been observed to be inefficient in propagating information across distant spatial positions in images. Recent studies in image inpainting attempt to overcome this issue by explicitly searching reference regions throughout the entire image to fill the features from reference regions in the missing regions. This operation can be implemented as contextual attention layer (CA layer) \cite{yu2018generative}, which has been widely used in many deep learning-based methods. However, it brings significant computational overhead as it computes the pair-wise similarity of feature patches at every spatial position. Also, it often fails to find proper reference regions due to the lack of supervision in terms of the correspondence between missing regions and known regions. We propose a novel contextual reconstruction loss (CR loss) to solve these problems. First, a criterion of searching reference region is designed based on minimizing reconstruction and adversarial losses corresponding to the searched reference and the ground-truth image. Second, unlike previous approaches which integrate the computationally heavy patch searching and replacement operation in the inpainting model, CR loss encourages a vanilla CNN to simulate this behavior during training, thus no extra computations are required during inference. Experimental results demonstrate that the proposed inpainting model with the CR loss compares favourably against the state-of-the-arts in terms of quantitative and visual performance. Code is available at \url{this https URL}.

Abstract (translated)

URL

https://arxiv.org/abs/2011.12836

PDF

https://arxiv.org/pdf/2011.12836.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot