Paper Reading AI Learner

Feature Selection based on Principal Component Analysis for Underwater Source Localization by Deep Learning

2020-11-25 14:17:06
Xiaoyu Zhu, Hefeng Dong, Pierluigi Salvo Rossi, Martin Landrø

Abstract

In this paper, we propose an interpretable feature selection method based on principal component analysis (PCA) and principal component regression (PCR), which can extract important features for underwater source localization by only introducing the source location without other prior information. This feature selection method is combined with a two-step framework for underwater source localization based on the semi-supervised learning scheme. In the framework, the first step utilizes a convolutional autoencoder to extract the latent features from the whole available dataset. The second step performs source localization via an encoder multi-layer perceptron (MLP) trained on a limited labeled portion of the dataset. The proposed approach has been validated on the public dataset SwllEx-96 Event S5. The result shows the framework has appealing accuracy and robustness on the unseen data, especially when the number of data used to train gradually decreases. After feature selection, not only the training stage has a 95\% acceleration but the performance of the framework becomes more robust on the depth and more accurate when the number of labeled data used to train is extremely limited.

Abstract (translated)

URL

https://arxiv.org/abs/2011.12754

PDF

https://arxiv.org/pdf/2011.12754.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot