Paper Reading AI Learner

A Framework for Authorial Clustering of Shorter Texts in Latent Semantic Spaces

2020-11-30 17:39:44
Rafi Trad, Myra Spiliopoulou

Abstract

Authorial clustering involves the grouping of documents written by the same author or team of authors without any prior positive examples of an author's writing style or thematic preferences. For authorial clustering on shorter texts (paragraph-length texts that are typically shorter than conventional documents), the document representation is particularly important: very high-dimensional feature spaces lead to data sparsity and suffer from serious consequences like the curse of dimensionality, while feature selection may lead to information loss. We propose a high-level framework which utilizes a compact data representation in a latent feature space derived with non-parametric topic modeling. Authorial clusters are identified thereafter in two scenarios: (a) fully unsupervised and (b) semi-supervised where a small number of shorter texts are known to belong to the same author (must-link constraints) or not (cannot-link constraints). We report on experiments with 120 collections in three languages and two genres and show that the topic-based latent feature space provides a promising level of performance while reducing the dimensionality by a factor of 1500 compared to state-of-the-arts. We also demonstrate that, while prior knowledge on the precise number of authors (i.e. authorial clusters) does not contribute much to additional quality, little knowledge on constraints in authorial clusters memberships leads to clear performance improvements in front of this difficult task. Thorough experimentation with standard metrics indicates that there still remains an ample room for improvement for authorial clustering, especially with shorter texts

Abstract (translated)

URL

https://arxiv.org/abs/2011.15038

PDF

https://arxiv.org/pdf/2011.15038.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot