Paper Reading AI Learner

Handling Noisy Labels via One-Step Abductive Multi-Target Learning

2020-11-25 09:40:34
Yongquan Yang, Yiming Yang, Jie Chen, Jiayi Zheng, Zhongxi Zheng

Abstract

Learning from noisy labels is an important concern because of the lack of accurate ground-truth labels in plenty of real-world scenarios. In practice, various approaches for this concern first make corrections corresponding to potentially noisy-labeled instances, and then update predictive model with information of the made corrections. However, in specific areas, such as medical histopathology whole slide image analysis (MHWSIA), it is often difficult or even impossible for experts to manually achieve the noisy-free ground-truth labels which leads to labels with heavy noise. This situation raises two more difficult problems: 1) the methodology of approaches making corrections corresponding to potentially noisy-labeled instances has limitations due to the heavy noise existing in labels; and 2) the appropriate evaluation strategy for validation/testing is unclear because of the great difficulty in collecting the noisy-free ground-truth labels. In this paper, we focus on alleviating these two problems. For the problem 1), we present a one-step abductive multi-target learning framework (OSAMTLF) that imposes a one-step logical reasoning upon machine learning via a multi-target learning procedure to abduct the predictions of the learning model to be subject to our prior knowledge. For the problem 2), we propose a logical assessment formula (LAF) that evaluates the logical rationality of the outputs of an approach by estimating the consistencies between the predictions of the learning model and the logical facts narrated from the results of the one-step logical reasoning of OSAMTLF. Applying OSAMTLF and LAF to the Helicobacter pylori (H. pylori) segmentation task in MHWSIA, we show that OSAMTLF is able to abduct the machine learning model achieving logically more rational predictions, which is beyond the capability of various state-of-the-art approaches for learning from noisy labels.

Abstract (translated)

URL

https://arxiv.org/abs/2011.14956

PDF

https://arxiv.org/pdf/2011.14956.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot