Paper Reading AI Learner

ACE-Net: Fine-Level Face Alignment through Anchors and Contours Estimation

2020-12-02 19:04:12
Jihua Huang, Amir Tamrakar

Abstract

We propose a novel facial Anchors and Contours Estimation framework, ACE-Net, for fine-level face alignment tasks. ACE-Net predicts facial anchors and contours that are richer than traditional facial landmarks and more accurate than facial boundaries. In addition, it does not suffer from the ambiguities and inconsistencies in facial-landmarks definitions. We introduce a weakly supervised loss enabling ACE-Net to learn from existing facial landmarks datasets without the need for extra annotations. Synthetic data is also used during training to bridge the density gap between landmarks annotation and true facial contours. We evaluate ACE-Net on commonly used face alignment datasets 300-W and HELEN, and show that ACE-Net achieves significantly higher fine-level face alignment accuracy than landmarks based models, without compromising its performance at the landmarks level. The proposed ACE-Net framework does not rely on any specific network architecture and thus can be applied on top of existing face alignment models for finer face alignment representation.

Abstract (translated)

URL

https://arxiv.org/abs/2012.01461

PDF

https://arxiv.org/pdf/2012.01461.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot