Paper Reading AI Learner

Explaining Predictions of Deep Neural Classifier via Activation Analysis

2020-12-03 20:36:19
Martin Stano, Wanda Benesova, Lukas Samuel Martak

Abstract

In many practical applications, deep neural networks have been typically deployed to operate as a black box predictor. Despite the high amount of work on interpretability and high demand on the reliability of these systems, they typically still have to include a human actor in the loop, to validate the decisions and handle unpredictable failures and unexpected corner cases. This is true in particular for failure-critical application domains, such as medical diagnosis. We present a novel approach to explain and support an interpretation of the decision-making process to a human expert operating a deep learning system based on Convolutional Neural Network (CNN). By modeling activation statistics on selected layers of a trained CNN via Gaussian Mixture Models (GMM), we develop a novel perceptual code in binary vector space that describes how the input sample is processed by the CNN. By measuring distances between pairs of samples in this perceptual encoding space, for any new input sample, we can now retrieve a set of most perceptually similar and dissimilar samples from an existing atlas of labeled samples, to support and clarify the decision made by the CNN model. Possible uses of this approach include for example Computer-Aided Diagnosis (CAD) systems working with medical imaging data, such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) scans. We demonstrate the viability of our method in the domain of medical imaging for patient condition diagnosis, as the proposed decision explanation method via similar ground truth domain examples (e.g. from existing diagnosis archives) will be interpretable by the operating medical personnel. Our results indicate that our method is capable of detecting distinct prediction strategies that enable us to identify the most similar predictions from an existing atlas.

Abstract (translated)

URL

https://arxiv.org/abs/2012.02248

PDF

https://arxiv.org/pdf/2012.02248.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot