Paper Reading AI Learner

A Survey on Deep Learning with Noisy Labels: How to train your model when you cannot trust on the annotations?

2020-12-05 15:45:20
Filipe R. Cordeiro, Gustavo Carneiro

Abstract

Noisy Labels are commonly present in data sets automatically collected from the internet, mislabeled by non-specialist annotators, or even specialists in a challenging task, such as in the medical field. Although deep learning models have shown significant improvements in different domains, an open issue is their ability to memorize noisy labels during training, reducing their generalization potential. As deep learning models depend on correctly labeled data sets and label correctness is difficult to guarantee, it is crucial to consider the presence of noisy labels for deep learning training. Several approaches have been proposed in the literature to improve the training of deep learning models in the presence of noisy labels. This paper presents a survey on the main techniques in literature, in which we classify the algorithm in the following groups: robust losses, sample weighting, sample selection, meta-learning, and combined approaches. We also present the commonly used experimental setup, data sets, and results of the state-of-the-art models.

Abstract (translated)

URL

https://arxiv.org/abs/2012.03061

PDF

https://arxiv.org/pdf/2012.03061.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot