Paper Reading AI Learner

Efficient Estimation of Influence of a Training Instance

2020-12-08 04:31:38
Sosuke Kobayashi, Sho Yokoi, Jun Suzuki, Kentaro Inui

Abstract

Understanding the influence of a training instance on a neural network model leads to improving interpretability. However, it is difficult and inefficient to evaluate the influence, which shows how a model's prediction would be changed if a training instance were not used. In this paper, we propose an efficient method for estimating the influence. Our method is inspired by dropout, which zero-masks a sub-network and prevents the sub-network from learning each training instance. By switching between dropout masks, we can use sub-networks that learned or did not learn each training instance and estimate its influence. Through experiments with BERT and VGGNet on classification datasets, we demonstrate that the proposed method can capture training influences, enhance the interpretability of error predictions, and cleanse the training dataset for improving generalization.

Abstract (translated)

URL

https://arxiv.org/abs/2012.04207

PDF

https://arxiv.org/pdf/2012.04207.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot