Paper Reading AI Learner

Demystifying Pseudo-LiDAR for Monocular 3D Object Detection

2020-12-10 16:31:41
Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder, Elisa Ricci

Abstract

Pseudo-LiDAR-based methods for monocular 3D object detection have generated large attention in the community due to performance gains showed on the KITTI3D benchmark dataset, in particular on the commonly reported validation split. This generated a distorted impression about the superiority of Pseudo-LiDAR approaches against methods working with RGB-images only. Our first contribution consists in rectifying this view by analysing and showing experimentally that the validation results published by Pseudo-LiDAR-based methods are substantially biased. The source of the bias resides in an overlap between the KITTI3D object detection validation set and the training/validation sets used to train depth predictors feeding Pseudo-LiDAR-based methods. Surprisingly, the bias remains also after geographically removing the overlap, revealing the presence of a more structured contamination. This leaves the test set as the only reliable mean of comparison, where published Pseudo-LiDAR-based methods do not excel. Our second contribution brings Pseudo-LiDAR-based methods back up in the ranking with the introduction of a 3D confidence prediction module. Thanks to the proposed architectural changes, our modified Pseudo-LiDAR-based methods exhibit extraordinary gains on the test scores (up to +8% 3D AP).

Abstract (translated)

URL

https://arxiv.org/abs/2012.05796

PDF

https://arxiv.org/pdf/2012.05796.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot