Paper Reading AI Learner

An Empirical Review of Adversarial Defenses

2020-12-10 09:34:41
Ayush Goel

Abstract

From face recognition systems installed in phones to self-driving cars, the field of AI is witnessing rapid transformations and is being integrated into our everyday lives at an incredible pace. Any major failure in these system's predictions could be devastating, leaking sensitive information or even costing lives (as in the case of self-driving cars). However, deep neural networks, which form the basis of such systems, are highly susceptible to a specific type of attack, called adversarial attacks. A hacker can, even with bare minimum computation, generate adversarial examples (images or data points that belong to another class, but consistently fool the model to get misclassified as genuine) and crumble the basis of such algorithms. In this paper, we compile and test numerous approaches to defend against such adversarial attacks. Out of the ones explored, we found two effective techniques, namely Dropout and Denoising Autoencoders, and show their success in preventing such attacks from fooling the model. We demonstrate that these techniques are also resistant to both higher noise levels as well as different kinds of adversarial attacks (although not tested against all). We also develop a framework for deciding the suitable defense technique to use against attacks, based on the nature of the application and resource constraints of the Deep Neural Network.

Abstract (translated)

URL

https://arxiv.org/abs/2012.06332

PDF

https://arxiv.org/pdf/2012.06332.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot