Paper Reading AI Learner

Incorporating Domain Knowledge To Improve Topic Segmentation Of Long MOOC Lecture Videos

2020-12-08 13:37:40
Ananda Das, Partha Pratim Das

Abstract

Topical Segmentation poses a great role in reducing search space of the topics taught in a lecture video specially when the video metadata lacks topic wise segmentation information. This segmentation information eases user efforts of searching, locating and browsing a topic inside a lecture video. In this work we propose an algorithm, that combines state-of-the art language model and domain knowledge graph for automatically detecting different coherent topics present inside a long lecture video. We use the language model on speech-to-text transcription to capture the implicit meaning of the whole video while the knowledge graph provides us the domain specific dependencies between different concepts of that subjects. Also leveraging the domain knowledge we can capture the way instructor binds and connects different concepts while teaching, which helps us in achieving better segmentation accuracy. We tested our approach on NPTEL lecture videos and holistic evaluation shows that it out performs the other methods described in the literature.

Abstract (translated)

URL

https://arxiv.org/abs/2012.07589

PDF

https://arxiv.org/pdf/2012.07589.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot