Paper Reading AI Learner

Anchor-Based Spatial-Temporal Attention Convolutional Networks for Dynamic 3D Point Cloud Sequences

2020-12-20 07:35:37
Guangming Wang, Hanwen Liu, Muyao Chen, Yehui Yang, Zhe Liu, Hesheng Wang

Abstract

tract: Recently, learning based methods for the robot perception from the image or video have much developed, but deep learning methods for dynamic 3D point cloud sequences are underexplored. With the widespread application of 3D sensors such as LiDAR and depth camera, efficient and accurate perception of the 3D environment from 3D sequence data is pivotal to autonomous driving and service robots. An Anchor-based Spatial-Temporal Attention Convolution operation (ASTAConv) is proposed in this paper to process dynamic 3D point cloud sequences. The proposed convolution operation builds a regular receptive field around each point by setting several virtual anchors around each point. The features of neighborhood points are firstly aggregated to each anchor based on spatial-temporal attention mechanism. Then, anchor-based sparse 3D convolution is adopted to aggregate the features of these anchors to the core points. The proposed method makes better use of the structured information within the local region, and learn spatial-temporal embedding features from dynamic 3D point cloud sequences. Then Anchor-based Spatial-Temporal Attention Convolutional Neural Networks (ASTACNNs) are proposed for classification and segmentation tasks and are evaluated on action recognition and semantic segmentation tasks. The experimental results on MSRAction3D and Synthia datasets demonstrate that the higher accuracy can be achieved than the previous state-of-the-art method by our novel strategy of multi-frame fusion.

Abstract (translated)

URL

https://arxiv.org/abs/2012.10860

PDF

https://arxiv.org/pdf/2012.10860


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot