Paper Reading AI Learner

On the effectiveness of signal decomposition, feature extraction and selection on lung sound classification

2020-12-22 00:14:48
Andrine Elsetrønning, Adil Rasheed, Jon Bekker, Omer San

Abstract

Lung sounds refer to the sound generated by air moving through the respiratory system. These sounds, as most biomedical signals, are non-linear and non-stationary. A vital part of using the lung sound for disease detection is discrimination between normal lung sound and abnormal lung sound. In this paper, several approaches for classifying between no-crackle and crackle lung sounds are explored. Decomposition methods such as Empirical Mode Decomposition, Ensemble Empirical Mode Decomposition, and Discrete Wavelet Transform are used along with several feature extraction techniques like Principal Component Analysis and Autoencoder, to explore how various classifiers perform for the given task. An open-source dataset downloaded from Kaggle, containing chest auscultation of varying quality is used to determine the results of using the different decomposition and feature extraction combinations. It is found that when higher-order statistical and spectral features along with the Mel-frequency cepstral coefficients are fed to the classier we get the best performance with the kNN classifier giving the best accuracy. Furthermore, it is also demonstrated that using a combination of feature selection methods one can significantly reduce the number of input features without adversely affecting the accuracy of the classifiers.

Abstract (translated)

URL

https://arxiv.org/abs/2012.11759

PDF

https://arxiv.org/pdf/2012.11759.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot