Paper Reading AI Learner

Multi-Modality Cut and Paste for 3D Object Detection

2020-12-23 15:23:16
Wenwei Zhang, Zhe Wang, Chen Change Loy

Abstract

tract: Three-dimensional (3D) object detection is essential in autonomous driving. There are observations that multi-modality methods based on both point cloud and imagery features perform only marginally better or sometimes worse than approaches that solely use single-modality point cloud. This paper investigates the reason behind this counter-intuitive phenomenon through a careful comparison between augmentation techniques used by single modality and multi-modality methods. We found that existing augmentations practiced in single-modality detection are equally useful for multi-modality detection. Then we further present a new multi-modality augmentation approach, Multi-mOdality Cut and pAste (MoCa). MoCa boosts detection performance by cutting point cloud and imagery patches of ground-truth objects and pasting them into different scenes in a consistent manner while avoiding collision between objects. We also explore beneficial architecture design and optimization practices in implementing a good multi-modality detector. Without using ensemble of detectors, our multi-modality detector achieves new state-of-the-art performance on nuScenes dataset and competitive performance on KITTI 3D benchmark. Our method also wins the best PKL award in the 3rd nuScenes detection challenge. Code and models will be released at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2012.12741

PDF

https://arxiv.org/pdf/2012.12741


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot