Paper Reading AI Learner

MG-SAGC: A multiscale graph and its self-adaptive graph convolution network for 3D point clouds

2020-12-23 01:58:41
Bo Wu, Bo Lang


tract: To enhance the ability of neural networks to extract local point cloud features and improve their quality, in this paper, we propose a multiscale graph generation method and a self-adaptive graph convolution method. First, we propose a multiscale graph generation method for point clouds. This approach transforms point clouds into a structured multiscale graph form that supports multiscale analysis of point clouds in the scale space and can obtain the dimensional features of point cloud data at different scales, thus making it easier to obtain the best point cloud features. Because traditional convolutional neural networks are not applicable to graph data with irregular vertex neighborhoods, this paper presents an sef-adaptive graph convolution kernel that uses the Chebyshev polynomial to fit an irregular convolution filter based on the theory of optimal approximation. In this paper, we adopt max pooling to synthesize the features of different scale maps and generate the point cloud features. In experiments conducted on three widely used public datasets, the proposed method significantly outperforms other state-of-the-art models, demonstrating its effectiveness and generalizability.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot