Paper Reading AI Learner

FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training

2020-12-24 05:24:10
Yonggan Fu, Haoran You, Yang Zhao, Yue Wang, Chaojian Li, Kailash Gopalakrishnan, Zhangyang Wang, Yingyan Lin

Abstract

Recent breakthroughs in deep neural networks (DNNs) have fueled a tremendous demand for intelligent edge devices featuring on-site learning, while the practical realization of such systems remains a challenge due to the limited resources available at the edge and the required massive training costs for state-of-the-art (SOTA) DNNs. As reducing precision is one of the most effective knobs for boosting training time/energy efficiency, there has been a growing interest in low-precision DNN training. In this paper, we explore from an orthogonal direction: how to fractionally squeeze out more training cost savings from the most redundant bit level, progressively along the training trajectory and dynamically per input. Specifically, we propose FracTrain that integrates (i) progressive fractional quantization which gradually increases the precision of activations, weights, and gradients that will not reach the precision of SOTA static quantized DNN training until the final training stage, and (ii) dynamic fractional quantization which assigns precisions to both the activations and gradients of each layer in an input-adaptive manner, for only "fractionally" updating layer parameters. Extensive simulations and ablation studies (six models, four datasets, and three training settings including standard, adaptation, and fine-tuning) validate the effectiveness of FracTrain in reducing computational cost and hardware-quantified energy/latency of DNN training while achieving a comparable or better (-0.12%~+1.87%) accuracy. For example, when training ResNet-74 on CIFAR-10, FracTrain achieves 77.6% and 53.5% computational cost and training latency savings, respectively, compared with the best SOTA baseline, while achieving a comparable (-0.07%) accuracy. Our codes are available at: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2012.13113

PDF

https://arxiv.org/pdf/2012.13113.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot