Paper Reading AI Learner

Temporal Contrastive Graph for Self-supervised Video Representation Learning


Abstract

Attempt to fully explore the fine-grained temporal structure and global-local chronological characteristics for self-supervised video representation learning, this work takes a closer look at exploiting the temporal structure of videos and further proposes a novel self-supervised method named Temporal Contrastive Graph (TCG). In contrast to the existing methods that randomly shuffle the video frames or video snippets within a video, our proposed TCG roots in a hybrid graph contrastive learning strategy to regard the inter-snippet and intra-snippet temporal relationships as self-supervision signals for temporal representation learning. Inspired by the neuroscience studies that the human visual system is sensitive to both local and global temporal changes, our proposed TCG integrates the prior knowledge about the frame and snippet orders into temporal contrastive graph structures, i.e., the intra-/inter- snippet temporal contrastive graph modules, to well preserve the local and global temporal relationships among video frame-sets and snippets. By randomly removing edges and masking node features of the intra-snippet graphs or inter-snippet graphs, our TCG can generate different correlated graph views. Then, specific contrastive losses are designed to maximize the agreement between node embeddings in different views. To learn the global context representation and recalibrate the channel-wise features adaptively, we introduce an adaptive video snippet order prediction module, which leverages the relational knowledge among video snippets to predict the actual snippet orders. Extensive experimental results demonstrate the superiority of our TCG over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.

Abstract (translated)

URL

https://arxiv.org/abs/2101.00820

PDF

https://arxiv.org/pdf/2101.00820.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot