Paper Reading AI Learner

Reinforced Imitative Graph Representation Learning for Mobile User Profiling: An Adversarial Training Perspective

2021-01-07 17:10:00
Dongjie Wang, Pengyang Wang, Kunpeng Liu, Yuanchun Zhou, Charles Hughes, Yanjie Fu

Abstract

In this paper, we study the problem of mobile user profiling, which is a critical component for quantifying users' characteristics in the human mobility modeling pipeline. Human mobility is a sequential decision-making process dependent on the users' dynamic interests. With accurate user profiles, the predictive model can perfectly reproduce users' mobility trajectories. In the reverse direction, once the predictive model can imitate users' mobility patterns, the learned user profiles are also optimal. Such intuition motivates us to propose an imitation-based mobile user profiling framework by exploiting reinforcement learning, in which the agent is trained to precisely imitate users' mobility patterns for optimal user profiles. Specifically, the proposed framework includes two modules: (1) representation module, which produces state combining user profiles and spatio-temporal context in real-time; (2) imitation module, where Deep Q-network (DQN) imitates the user behavior (action) based on the state that is produced by the representation module. However, there are two challenges in running the framework effectively. First, epsilon-greedy strategy in DQN makes use of the exploration-exploitation trade-off by randomly pick actions with the epsilon probability. Such randomness feeds back to the representation module, causing the learned user profiles unstable. To solve the problem, we propose an adversarial training strategy to guarantee the robustness of the representation module. Second, the representation module updates users' profiles in an incremental manner, requiring integrating the temporal effects of user profiles. Inspired by Long-short Term Memory (LSTM), we introduce a gated mechanism to incorporate new and old user characteristics into the user profile.

Abstract (translated)

URL

https://arxiv.org/abs/2101.02634

PDF

https://arxiv.org/pdf/2101.02634.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot