Abstract
tract: Motivated by the growing amount of publicly available video data on online streaming services and an increased interest in applications that analyze continuous video streams such as autonomous driving, this technical report provides a theoretical insight into deep neural networks for video learning, under label constraints. I build upon previous work in video learning for computer vision, make observations on model performance and propose further mechanisms to help improve our observations.
Abstract (translated)
URL
https://arxiv.org/abs/2101.02774