Paper Reading AI Learner

SHARKS: Smart Hacking Approaches for RisK Scanning in Internet-of-Things and Cyber-Physical Systems based on Machine Learning

2021-01-07 22:01:30
Tanujay Saha, Najwa Aaraj, Neel Ajjarapu, Niraj K. Jha

Abstract

Cyber-physical systems (CPS) and Internet-of-Things (IoT) devices are increasingly being deployed across multiple functionalities, ranging from healthcare devices and wearables to critical infrastructures, e.g., nuclear power plants, autonomous vehicles, smart cities, and smart homes. These devices are inherently not secure across their comprehensive software, hardware, and network stacks, thus presenting a large attack surface that can be exploited by hackers. In this article, we present an innovative technique for detecting unknown system vulnerabilities, managing these vulnerabilities, and improving incident response when such vulnerabilities are exploited. The novelty of this approach lies in extracting intelligence from known real-world CPS/IoT attacks, representing them in the form of regular expressions, and employing machine learning (ML) techniques on this ensemble of regular expressions to generate new attack vectors and security vulnerabilities. Our results show that 10 new attack vectors and 122 new vulnerability exploits can be successfully generated that have the potential to exploit a CPS or an IoT ecosystem. The ML methodology achieves an accuracy of 97.4% and enables us to predict these attacks efficiently with an 87.2% reduction in the search space. We demonstrate the application of our method to the hacking of the in-vehicle network of a connected car. To defend against the known attacks and possible novel exploits, we discuss a defense-in-depth mechanism for various classes of attacks and the classification of data targeted by such attacks. This defense mechanism optimizes the cost of security measures based on the sensitivity of the protected resource, thus incentivizing its adoption in real-world CPS/IoT by cybersecurity practitioners.

Abstract (translated)

URL

https://arxiv.org/abs/2101.02780

PDF

https://arxiv.org/pdf/2101.02780.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot