Paper Reading AI Learner

Adversarial Attack Attribution: Discovering Attributable Signals in Adversarial ML Attacks

2021-01-08 08:16:41
Marissa Dotter, Sherry Xie, Keith Manville, Josh Harguess, Colin Busho, Mikel Rodriguez

Abstract

tract: Machine Learning (ML) models are known to be vulnerable to adversarial inputs and researchers have demonstrated that even production systems, such as self-driving cars and ML-as-a-service offerings, are susceptible. These systems represent a target for bad actors. Their disruption can cause real physical and economic harm. When attacks on production ML systems occur, the ability to attribute the attack to the responsible threat group is a critical step in formulating a response and holding the attackers accountable. We pose the following question: can adversarially perturbed inputs be attributed to the particular methods used to generate the attack? In other words, is there a way to find a signal in these attacks that exposes the attack algorithm, model architecture, or hyperparameters used in the attack? We introduce the concept of adversarial attack attribution and create a simple supervised learning experimental framework to examine the feasibility of discovering attributable signals in adversarial attacks. We find that it is possible to differentiate attacks generated with different attack algorithms, models, and hyperparameters on both the CIFAR-10 and MNIST datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2101.02899

PDF

https://arxiv.org/pdf/2101.02899


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot