Paper Reading AI Learner

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search

2021-01-08 14:30:07
Chenyang Gao, Guanyu Cai, Xinyang Jiang, Feng Zheng, Jun Zhang, Yifei Gong, Pai Peng, Xiaowei Guo, Xing Sun


tract: Text-based person search aims at retrieving target person in an image gallery using a descriptive sentence of that person. It is very challenging since modal gap makes effectively extracting discriminative features more difficult. Moreover, the inter-class variance of both pedestrian images and descriptions is small. So comprehensive information is needed to align visual and textual clues across all scales. Most existing methods merely consider the local alignment between images and texts within a single scale (e.g. only global scale or only partial scale) then simply construct alignment at each scale separately. To address this problem, we propose a method that is able to adaptively align image and textual features across all scales, called NAFS (i.e.Non-local Alignment over Full-Scale representations). Firstly, a novel staircase network structure is proposed to extract full-scale image features with better locality. Secondly, a BERT with locality-constrained attention is proposed to obtain representations of descriptions at different scales. Then, instead of separately aligning features at each scale, a novel contextual non-local attention mechanism is applied to simultaneously discover latent alignments across all scales. The experimental results show that our method outperforms the state-of-the-art methods by 5.53% in terms of top-1 and 5.35% in terms of top-5 on text-based person search dataset. The code is available at this https URL

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot