Paper Reading AI Learner

Graph-of-Tweets: A Graph Merging Approach to Sub-event Identification

2021-01-08 20:24:25
Xiaonan Jing, Julia Taylor Rayz


tract: Graph structures are powerful tools for modeling the relationships between textual elements. Graph-of-Words (GoW) has been adopted in many Natural Language tasks to encode the association between terms. However, GoW provides few document-level relationships in cases when the connections between documents are also essential. For identifying sub-events on social media like Twitter, features from both word- and document-level can be useful as they supply different information of the event. We propose a hybrid Graph-of-Tweets (GoT) model which combines the word- and document-level structures for modeling Tweets. To compress large amount of raw data, we propose a graph merging method which utilizes FastText word embeddings to reduce the GoW. Furthermore, we present a novel method to construct GoT with the reduced GoW and a Mutual Information (MI) measure. Finally, we identify maximal cliques to extract popular sub-events. Our model showed promising results on condensing lexical-level information and capturing keywords of sub-events.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot