Paper Reading AI Learner

An Unsupervised Normalization Algorithm for Noisy Text: A Case Study for Information Retrieval and Stance Detection

2021-01-09 06:57:09
Anurag Roy, Shalmoli Ghosh, Kripabandhu Ghosh, Saptarshi Ghosh

Abstract

tract: A large fraction of textual data available today contains various types of 'noise', such as OCR noise in digitized documents, noise due to informal writing style of users on microblogging sites, and so on. To enable tasks such as search/retrieval and classification over all the available data, we need robust algorithms for text normalization, i.e., for cleaning different kinds of noise in the text. There have been several efforts towards cleaning or normalizing noisy text; however, many of the existing text normalization methods are supervised and require language-dependent resources or large amounts of training data that is difficult to obtain. We propose an unsupervised algorithm for text normalization that does not need any training data / human intervention. The proposed algorithm is applicable to text over different languages, and can handle both machine-generated and human-generated noise. Experiments over several standard datasets show that text normalization through the proposed algorithm enables better retrieval and stance detection, as compared to that using several baseline text normalization methods. Implementation of our algorithm can be found at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2101.03303

PDF

https://arxiv.org/pdf/2101.03303


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot