Paper Reading AI Learner

Are We There Yet? Learning to Localize in Embodied Instruction Following

2021-01-09 21:49:41
Shane Storks, Qiaozi Gao, Govind Thattai, Gokhan Tur


tract: Embodied instruction following is a challenging problem requiring an agent to infer a sequence of primitive actions to achieve a goal environment state from complex language and visual inputs. Action Learning From Realistic Environments and Directives (ALFRED) is a recently proposed benchmark for this problem consisting of step-by-step natural language instructions to achieve subgoals which compose to an ultimate high-level goal. Key challenges for this task include localizing target locations and navigating to them through visual inputs, and grounding language instructions to visual appearance of objects. To address these challenges, in this study, we augment the agent's field of view during navigation subgoals with multiple viewing angles, and train the agent to predict its relative spatial relation to the target location at each timestep. We also improve language grounding by introducing a pre-trained object detection module to the model pipeline. Empirical studies show that our approach exceeds the baseline model performance.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot