Paper Reading AI Learner

Extracting Pasture Phenotype and Biomass Percentages using Weakly Supervised Multi-target Deep Learning on a Small Dataset

2021-01-08 19:41:46
Badri Narayanan, Mohamed Saadeldin, Paul Albert, Kevin McGuinness, Brian Mac Namee

Abstract

The dairy industry uses clover and grass as fodder for cows. Accurate estimation of grass and clover biomass yield enables smart decisions in optimizing fertilization and seeding density, resulting in increased productivity and positive environmental impact. Grass and clover are usually planted together, since clover is a nitrogen-fixing plant that brings nutrients to the soil. Adjusting the right percentages of clover and grass in a field reduces the need for external fertilization. Existing approaches for estimating the grass-clover composition of a field are expensive and time consuming - random samples of the pasture are clipped and then the components are physically separated to weigh and calculate percentages of dry grass, clover and weeds in each sample. There is growing interest in developing novel deep learning based approaches to non-destructively extract pasture phenotype indicators and biomass yield predictions of different plant species from agricultural imagery collected from the field. Providing these indicators and predictions from images alone remains a significant challenge. Heavy occlusions in the dense mixture of grass, clover and weeds make it difficult to estimate each component accurately. Moreover, although supervised deep learning models perform well with large datasets, it is tedious to acquire large and diverse collections of field images with precise ground truth for different biomass yields. In this paper, we demonstrate that applying data augmentation and transfer learning is effective in predicting multi-target biomass percentages of different plant species, even with a small training dataset. The scheme proposed in this paper used a training set of only 261 images and provided predictions of biomass percentages of grass, clover, white clover, red clover, and weeds with mean absolute error of 6.77%, 6.92%, 6.21%, 6.89%, and 4.80% respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2101.03198

PDF

https://arxiv.org/pdf/2101.03198.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot