Paper Reading AI Learner

The Diabetic Buddy: A Diet Regulator andTracking System for Diabetics

2021-01-08 20:03:58
Muhammad Usman, Kashif Ahmad, Amir Sohail, Marwa Qaraqe

Abstract

tract: The prevalence of Diabetes mellitus (DM) in the Middle East is exceptionally high as compared to the rest of the world. In fact, the prevalence of diabetes in the Middle East is 17-20%, which is well above the global average of 8-9%. Research has shown that food intake has strong connections with the blood glucose levels of a patient. In this regard, there is a need to build automatic tools to monitor the blood glucose levels of diabetics and their daily food intake. This paper presents an automatic way of tracking continuous glucose and food intake of diabetics using off-the-shelf sensors and machine learning, respectively. Our system not only helps diabetics to track their daily food intake but also assists doctors to analyze the impact of the food in-take on blood glucose in real-time. For food recognition, we collected a large-scale Middle-Eastern food dataset and proposed a fusion-based framework incorporating several existing pre-trained deep models for Middle-Eastern food recognition.

Abstract (translated)

URL

https://arxiv.org/abs/2101.03203

PDF

https://arxiv.org/pdf/2101.03203


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot