Paper Reading AI Learner

Trear: Transformer-based RGB-D Egocentric Action Recognition

2021-01-05 19:59:30
Xiangyu Li, Yonghong Hou, Pichao Wang, Zhimin Gao, Mingliang Xu, Wanqing Li

Abstract

In this paper, we propose a \textbf{Tr}ansformer-based RGB-D \textbf{e}gocentric \textbf{a}ction \textbf{r}ecognition framework, called Trear. It consists of two modules, inter-frame attention encoder and mutual-attentional fusion block. Instead of using optical flow or recurrent units, we adopt self-attention mechanism to model the temporal structure of the data from different modalities. Input frames are cropped randomly to mitigate the effect of the data redundancy. Features from each modality are interacted through the proposed fusion block and combined through a simple yet effective fusion operation to produce a joint RGB-D representation. Empirical experiments on two large egocentric RGB-D datasets, THU-READ and FPHA, and one small dataset, WCVS, have shown that the proposed method outperforms the state-of-the-art results by a large margin.

Abstract (translated)

URL

https://arxiv.org/abs/2101.03904

PDF

https://arxiv.org/pdf/2101.03904.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot