Paper Reading AI Learner

On Interfacing the Brain with Quantum Computers: An Approach to Listen to the Logic of the Mind

2020-12-22 19:36:12
Eduardo Reck Miranda

Abstract

This chapter presents a quantum computing-based approach to study and harness neuronal correlates of mental activity for the development of Brain-Computer Interface (BCI) systems. It introduces the notion of a logic of the mind, where neurophysiological data are encoded as logical expressions representing mental activity. Effective logical expressions are likely to be extensive, involving dozens of variables. Large expressions require considerable computational power to be processed. This is problematic for BCI applications because they require fast reaction times to execute sequences of commands. Quantum computers hold much promise in terms of processing speed for some problems, including those involving logical expressions. Hence, we propose to use quantum computers to process the logic of the mind. The chapter begins with an introduction to BCI and the electroencephalogram, which is the neurophysiological signal that is normally used in BCI. Then, it briefly discusses how the EEG corresponds to mental states, followed by an introduction to the logic of the mind. After that, there is an overview of quantum computing, focusing on the basics deemed necessary to understand how it processes logical expressions. An example of a BCI system is presented. In a nutshell, the system reads the EEG and builds logical expressions, which are sent to a quantum computer to solve them. In turn, the system converts the results into sounds by means of a bespoke synthesiser. Essentially, the BCI here is a musical instrument controlled by the mind of the player. Our BCI is a proof-of-concept aimed at demonstrating how quantum computing may support the development of sophisticated BCI systems. The remaining of the chapter is devoted to technical and practical considerations on the limitations of current quantum computing hardware technology and scalability of the system.

Abstract (translated)

URL

https://arxiv.org/abs/2101.03887

PDF

https://arxiv.org/pdf/2101.03887.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot