Paper Reading AI Learner

CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO using Deep Learning

2021-01-12 10:12:28
Jiajia Guo, Chao-Kai Wen, Shi Jin


tract: In frequency-division duplexing systems, the downlink channel state information (CSI) acquisition scheme leads to high training and feedback overheads. In this paper, we propose an uplink-aided downlink channel acquisition framework using deep learning to reduce these overheads. Unlike most existing works that focus only on channel estimation or feedback modules, to the best of our knowledge, this is the first study that considers the entire downlink CSI acquisition process, including downlink pilot design, channel estimation, and feedback. First, we propose an adaptive pilot design module by exploiting the correlation in magnitude among bidirectional channels in the angular domain to improve channel estimation. Next, to avoid the bit allocation problem during the feedback module, we concatenate the complex channel and embed the uplink channel magnitude to the channel reconstruction at the base station. Lastly, we combine the above two modules and compare two popular downlink channel acquisition frameworks. The former framework estimates and feeds back the channel at the user equipment subsequently. The user equipment in the latter one directly feeds back the received pilot signals to the base station. Our results reveal that, with the help of uplink, directly feeding back the pilot signals can save approximately 20% of feedback bits, which provides a guideline for future research.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot