Paper Reading AI Learner

Dimensions of Commonsense Knowledge

2021-01-12 17:52:39
Filip Ilievski, Alessandro Oltramari, Kaixin Ma, Bin Zhang, Deborah L. McGuinness, Pedro Szekely


tract: Commonsense knowledge is essential for many AI applications, including those in natural language processing, visual processing, and planning. Consequently, many sources that include commonsense knowledge have been designed and constructed over the past decades. Recently, the focus has been on large text-based sources, which facilitate easier integration with neural (language) models and application on textual tasks, typically at the expense of the semantics of the sources. Such practice prevents the harmonization of these sources, understanding their coverage and gaps, and may hinder the semantic alignment of their knowledge with downstream tasks. Efforts to consolidate commonsense knowledge have yielded partial success, but provide no clear path towards a comprehensive consolidation of existing commonsense knowledge. The ambition of this paper is to organize these sources around a common set of dimensions of commonsense knowledge. For this purpose, we survey a wide range of popular commonsense sources with a special focus on their relations. We consolidate these relations into 13 knowledge dimensions, each abstracting over more specific relations found in sources. This consolidation allows us to unify the separate sources and to compute indications of their coverage, overlap, and gaps with respect to the knowledge dimensions. Moreover, we analyze the impact of each dimension on downstream reasoning tasks that require commonsense knowledge, observing that the temporal and desire/goal dimensions are very beneficial for reasoning on current downstream tasks, while distinctness and lexical knowledge have little impact. These results reveal focus towards some dimensions in current evaluation, and potential neglect of others.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot