Paper Reading AI Learner

Enhanced Information Fusion Network for Crowd Counting

2021-01-12 03:35:22
Geng Chen, Peirong Guo


tract: In recent years, crowd counting, a technique for predicting the number of people in an image, becomes a challenging task in computer vision. In this paper, we propose a cross-column feature fusion network to solve the problem of information redundancy in columns. We introduce the Information Fusion Module (IFM) which provides a channel for information flow to help different columns to obtain significant information from another column. Through this channel, different columns exchange information with each other and extract useful features from the other column to enhance key information. Hence, there is no need for columns to pay attention to all areas in the image. Each column can be responsible for different regions, thereby reducing the burden of each column. In experiments, the generalizability of our model is more robust and the results of transferring between different datasets acheive the comparable results with the state-of-the-art models.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot