Paper Reading AI Learner

Harmonic Convolutional Networks based on Discrete Cosine Transform

2021-01-12 16:31:40
Matej Ulicny, Vladimir A. Krylov, Rozenn Dahyot


tract: Convolutional neural networks (CNNs) learn filters in order to capture local correlation patterns in feature space. We propose to learn these filters as combinations of preset spectral filters defined by the Discrete Cosine Transform (DCT). Our proposed DCT-based harmonic blocks replace conventional convolutional layers to produce partially or fully harmonic versions of new or existing CNN architectures. Using DCT energy compaction properties, we demonstrate how the harmonic networks can be efficiently compressed by truncating high-frequency information in harmonic blocks thanks to the redundancies in the spectral domain. We report extensive experimental validation demonstrating benefits of the introduction of harmonic blocks into state-of-the-art CNN models in image classification, object detection and semantic segmentation applications.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot