Paper Reading AI Learner

Evaluation of Deep Learning Models for Hostility Detection in Hindi Text

2021-01-11 19:10:57
Ramchandra Joshi, Rushabh Karnavat, Kaustubh Jirapure, Raviraj Joshi


tract: The social media platform is a convenient medium to express personal thoughts and share useful information. It is fast, concise, and has the ability to reach millions. It is an effective place to archive thoughts, share artistic content, receive feedback, promote products, etc. Despite having numerous advantages these platforms have given a boost to hostile posts. Hate speech and derogatory remarks are being posted for personal satisfaction or political gain. The hostile posts can have a bullying effect rendering the entire platform experience hostile. Therefore detection of hostile posts is important to maintain social media hygiene. The problem is more pronounced languages like Hindi which are low in resources. In this work, we present approaches for hostile text detection in the Hindi language. The proposed approaches are evaluated on the Constraint@AAAI 2021 Hindi hostility detection dataset. The dataset consists of hostile and non-hostile texts collected from social media platforms. The hostile posts are further segregated into overlapping classes of fake, offensive, hate, and defamation. We evaluate a host of deep learning approaches based on CNN and LSTM for this multi-label classification problem. The pre-trained Hindi fast text word embeddings by IndicNLP and Facebook are used in conjunction with these models to evaluate their effectiveness. We show that the multi-CNN model when combined with IndicNLP FastText word embedding gives the best results.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot