Paper Reading AI Learner

On the Calibration and Uncertainty of Neural Learning to Rank Models

2021-01-12 09:05:46
Gustavo Penha, Claudia Hauff

Abstract

tract: According to the Probability Ranking Principle (PRP), ranking documents in decreasing order of their probability of relevance leads to an optimal document ranking for ad-hoc retrieval. The PRP holds when two conditions are met: [C1] the models are well calibrated, and, [C2] the probabilities of relevance are reported with certainty. We know however that deep neural networks (DNNs) are often not well calibrated and have several sources of uncertainty, and thus [C1] and [C2] might not be satisfied by neural rankers. Given the success of neural Learning to Rank (L2R) approaches-and here, especially BERT-based approaches-we first analyze under which circumstances deterministic, i.e. outputs point estimates, neural rankers are calibrated. Then, motivated by our findings we use two techniques to model the uncertainty of neural rankers leading to the proposed stochastic rankers, which output a predictive distribution of relevance as opposed to point estimates. Our experimental results on the ad-hoc retrieval task of conversation response ranking reveal that (i) BERT-based rankers are not robustly calibrated and that stochastic BERT-based rankers yield better calibration; and (ii) uncertainty estimation is beneficial for both risk-aware neural ranking, i.e.taking into account the uncertainty when ranking documents, and for predicting unanswerable conversational contexts.

Abstract (translated)

URL

https://arxiv.org/abs/2101.04356

PDF

https://arxiv.org/pdf/2101.04356


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot