Paper Reading AI Learner

Neural Network-based Virtual Microphone Estimator

2021-01-12 06:30:24
Tsubasa Ochiai, Marc Delcroix, Tomohiro Nakatani, Rintaro Ikeshita, Keisuke Kinoshita, Shoko Araki

Abstract

tract: Developing microphone array technologies for a small number of microphones is important due to the constraints of many devices. One direction to address this situation consists of virtually augmenting the number of microphone signals, e.g., based on several physical model assumptions. However, such assumptions are not necessarily met in realistic conditions. In this paper, as an alternative approach, we propose a neural network-based virtual microphone estimator (NN-VME). The NN-VME estimates virtual microphone signals directly in the time domain, by utilizing the precise estimation capability of the recent time-domain neural networks. We adopt a fully supervised learning framework that uses actual observations at the locations of the virtual microphones at training time. Consequently, the NN-VME can be trained using only multi-channel observations and thus directly on real recordings, avoiding the need for unrealistic physical model-based assumptions. Experiments on the CHiME-4 corpus show that the proposed NN-VME achieves high virtual microphone estimation performance even for real recordings and that a beamformer augmented with the NN-VME improves both the speech enhancement and recognition performance.

Abstract (translated)

URL

https://arxiv.org/abs/2101.04315

PDF

https://arxiv.org/pdf/2101.04315


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot