Paper Reading AI Learner

Towards Interpretable Ensemble Learning for Image-based Malware Detection

2021-01-13 05:46:44
Yuzhou Lin, Xiaolin Chang

Abstract

tract: Deep learning (DL) models for image-based malware detection have exhibited their capability in producing high prediction accuracy. But model interpretability is posing challenges to their widespread application in security and safety-critical application domains. This paper aims for designing an Interpretable Ensemble learning approach for image-based Malware Detection (IEMD). We first propose a Selective Deep Ensemble Learning-based (SDEL) detector and then design an Ensemble Deep Taylor Decomposition (EDTD) approach, which can give the pixel-level explanation to SDEL detector outputs. Furthermore, we develop formulas for calculating fidelity, robustness and expressiveness on pixel-level heatmaps in order to assess the quality of EDTD explanation. With EDTD explanation, we develop a novel Interpretable Dropout approach (IDrop), which establishes IEMD by training SDEL detector. Experiment results exhibit the better explanation of our EDTD than the previous explanation methods for image-based malware detection. Besides, experiment results indicate that IEMD achieves a higher detection accuracy up to 99.87% while exhibiting interpretability with high quality of prediction results. Moreover, experiment results indicate that IEMD interpretability increases with the increasing detection accuracy during the construction of IEMD. This consistency suggests that IDrop can mitigate the tradeoff between model interpretability and detection accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/2101.04889

PDF

https://arxiv.org/pdf/2101.04889


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot