Paper Reading AI Learner

Responsible AI Challenges in End-to-end Machine Learning

2021-01-15 04:55:03
Steven Euijong Whang, Ki Hyun Tae, Yuji Roh, Geon Heo

Abstract

Responsible AI is becoming critical as AI is widely used in our everyday lives. Many companies that deploy AI publicly state that when training a model, we not only need to improve its accuracy, but also need to guarantee that the model does not discriminate against users (fairness), is resilient to noisy or poisoned data (robustness), is explainable, and more. In addition, these objectives are not only relevant to model training, but to all steps of end-to-end machine learning, which include data collection, data cleaning and validation, model training, model evaluation, and model management and serving. Finally, responsible AI is conceptually challenging, and supporting all the objectives must be as easy as possible. We thus propose three key research directions towards this vision - depth, breadth, and usability - to measure progress and introduce our ongoing research. First, responsible AI must be deeply supported where multiple objectives like fairness and robust must be handled together. To this end, we propose FR-Train, a holistic framework for fair and robust model training in the presence of data bias and poisoning. Second, responsible AI must be broadly supported, preferably in all steps of machine learning. Currently we focus on the data pre-processing steps and propose Slice Tuner, a selective data acquisition framework for training fair and accurate models, and MLClean, a data cleaning framework that also improves fairness and robustness. Finally, responsible AI must be usable where the techniques must be easy to deploy and actionable. We propose FairBatch, a batch selection approach for fairness that is effective and simple to use, and Slice Finder, a model evaluation tool that automatically finds problematic slices. We believe we scratched the surface of responsible AI for end-to-end machine learning and suggest research challenges moving forward.

Abstract (translated)

URL

https://arxiv.org/abs/2101.05967

PDF

https://arxiv.org/pdf/2101.05967.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot