Paper Reading AI Learner

Knowledge Generation -- Variational Bayes on Knowledge Graphs


Abstract

This thesis is a proof of concept for the potential of Variational Auto-Encoder (VAE) on representation learning of real-world Knowledge Graphs (KG). Inspired by successful approaches to the generation of molecular graphs, we evaluate the capabilities of our model, the Relational Graph Variational Auto-Encoder (RGVAE). The impact of the modular hyperparameter choices, encoding through graph convolutions, graph matching and latent space prior, is compared. The RGVAE is first evaluated on link prediction. The mean reciprocal rank (MRR) scores on the two datasets FB15K-237 and WN18RR are compared to the embedding-based model DistMult. A variational DistMult and a RGVAE without latent space prior constraint are implemented as control models. The results show that between different settings, the RGVAE with relaxed latent space, scores highest on both datasets, yet does not outperform the DistMult. Further, we investigate the latent space in a twofold experiment: first, linear interpolation between the latent representation of two triples, then the exploration of each latent dimension in a $95\%$ confidence interval. Both interpolations show that the RGVAE learns to reconstruct the adjacency matrix but fails to disentangle. For the last experiment we introduce a new validation method for the FB15K-237 data set. The relation type-constrains of generated triples are filtered and matched with entity types. The observed rate of valid generated triples is insignificantly higher than the random threshold. All generated and valid triples are unseen. A comparison between different latent space priors, using the $\delta$-VAE method, reveals a decoder collapse. Finally we analyze the limiting factors of our approach compared to molecule generation and propose solutions for the decoder collapse and successful representation learning of multi-relational KGs.

Abstract (translated)

URL

https://arxiv.org/abs/2101.08857

PDF

https://arxiv.org/pdf/2101.08857.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot