Paper Reading AI Learner

Improved Sensitivity of Base Layer on the Performance of Rigid Pavement

2021-01-20 23:43:41
Sajib Saha, Fan Gu, Xue Luo, Robert L. Lytton

Abstract

The performance of rigid pavement is greatly affected by the properties of base/subbase as well as subgrade layer. However, the performance predicted by the AASHTOWare Pavement ME design shows low sensitivity to the properties of base and subgrade layers. To improve the sensitivity and better reflect the influence of unbound layers a new set of improved models i.e., resilient modulus (MR) and modulus of subgrade reaction (k-value) are adopted in this study. An Artificial Neural Network (ANN) model is developed to predict the modified k-value based on finite element (FE) analysis. The training and validation datasets in the ANN model consist of 27000 simulation cases with different combinations of pavement layer thickness, layer modulus and slab-base interface bond ratio. To examine the sensitivity of modified MR and k-values on pavement response, eight pavement sections data are collected from the Long-Term Pavement performance (LTPP) database and modeled by using the FE software ISLAB2000. The computational results indicate that the modified MR values have higher sensitivity to water content in base layer on critical stress and deflection response of rigid pavements compared to the results using the Pavement ME design model. It is also observed that the k-values using ANN model has the capability of predicting critical pavement response at any partially bonded conditions whereas the Pavement ME design model can only calculate at two extreme bonding conditions (i.e., fully bonding and no bonding).

Abstract (translated)

URL

https://arxiv.org/abs/2101.09167

PDF

https://arxiv.org/pdf/2101.09167.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot