Paper Reading AI Learner

A Hybrid Approach to Measure Semantic Relatedness in Biomedical Concepts

2021-01-25 16:01:27
Katikapalli Subramanyam Kalyan, Sivanesan Sangeetha

Abstract

Objective: This work aimed to demonstrate the effectiveness of a hybrid approach based on Sentence BERT model and retrofitting algorithm to compute relatedness between any two biomedical concepts. Materials and Methods: We generated concept vectors by encoding concept preferred terms using ELMo, BERT, and Sentence BERT models. We used BioELMo and Clinical ELMo. We used Ontology Knowledge Free (OKF) models like PubMedBERT, BioBERT, BioClinicalBERT, and Ontology Knowledge Injected (OKI) models like SapBERT, CoderBERT, KbBERT, and UmlsBERT. We trained all the BERT models using Siamese network on SNLI and STSb datasets to allow the models to learn more semantic information at the phrase or sentence level so that they can represent multi-word concepts better. Finally, to inject ontology relationship knowledge into concept vectors, we used retrofitting algorithm and concepts from various UMLS relationships. We evaluated our hybrid approach on four publicly available datasets which also includes the recently released EHR-RelB dataset. EHR-RelB is the largest publicly available relatedness dataset in which 89% of terms are multi-word which makes it more challenging. Results: Sentence BERT models mostly outperformed corresponding BERT models. The concept vectors generated using the Sentence BERT model based on SapBERT and retrofitted using UMLS-related concepts achieved the best results on all four datasets. Conclusions: Sentence BERT models are more effective compared to BERT models in computing relatedness scores in most of the cases. Injecting ontology knowledge into concept vectors further enhances their quality and contributes to better relatedness scores.

Abstract (translated)

URL

https://arxiv.org/abs/2101.10196

PDF

https://arxiv.org/pdf/2101.10196.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot