Paper Reading AI Learner

RTGPU: Real-Time GPU Scheduling of Hard Deadline Parallel Tasks with Fine-Grain Utilization

2021-01-25 22:34:06
An Zou, Jing Li, Christopher D. Gill, Xuan Zhang

Abstract

Many emerging cyber-physical systems, such as autonomous vehicles and robots, rely heavily on artificial intelligence and machine learning algorithms to perform important system operations. Since these highly parallel applications are computationally intensive, they need to be accelerated by graphics processing units (GPUs) to meet stringent timing constraints. However, despite the wide adoption of GPUs, efficiently scheduling multiple GPU applications while providing rigorous real-time guarantees remains a challenge. In this paper, we propose RTGPU, which can schedule the execution of multiple GPU applications in real-time to meet hard deadlines. Each GPU application can have multiple CPU execution and memory copy segments, as well as GPU kernels. We start with a model to explicitly account for the CPU and memory copy segments of these applications. We then consider the GPU architecture in the development of a precise timing model for the GPU kernels and leverage a technique known as persistent threads to implement fine-grained kernel scheduling with improved performance through interleaved execution. Next, we propose a general method for scheduling parallel GPU applications in real time. Finally, to schedule multiple parallel GPU applications, we propose a practical real-time scheduling algorithm based on federated scheduling and grid search (for GPU kernel segments) with uniprocessor fixed priority scheduling (for multiple CPU and memory copy segments). Our approach provides superior schedulability compared with previous work, and gives real-time guarantees to meet hard deadlines for multiple GPU applications according to comprehensive validation and evaluation on a real NVIDIA GTX1080Ti GPU system.

Abstract (translated)

URL

https://arxiv.org/abs/2101.10463

PDF

https://arxiv.org/pdf/2101.10463.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot