Paper Reading AI Learner

Chronological age estimation of lateral cephalometric radiographs with deep learning

2021-01-28 03:43:24
Ningtao Liu

Abstract

The traditional manual age estimation method is crucial labor based on many kinds of the X-Ray image. Some current studies have shown that lateral cephalometric(LC) images can be used to estimate age. However, these methods are based on manually measuring some image features and making age estimates based on experience or scoring. Therefore, these methods are time-consuming and labor-intensive, and the effect will be affected by subjective opinions. In this work, we propose a saliency map-enhanced age estimation method, which can automatically perform age estimation based on LC images. Meanwhile, it can also show the importance of each region in the image for age estimation, which undoubtedly increases the method's Interpretability. Our method was tested on 3014 LC images from 4 to 40 years old. The MEA of the experimental result is 1.250, which is less than the result of the state-of-the-art benchmark because it performs significantly better in the age group with fewer data. Besides, our model is trained in each area with a high contribution to age estimation in LC images, so the effect of these different areas on the age estimation task was verified. Consequently, we conclude that the proposed saliency map enhancements chronological age estimation method of lateral cephalometric radiographs can work well in chronological age estimation task, especially when the amount of data is small. Besides, compared with traditional deep learning, our method is also interpretable.

Abstract (translated)

URL

https://arxiv.org/abs/2101.11805

PDF

https://arxiv.org/pdf/2101.11805.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot