Paper Reading AI Learner

Lightweight 3-D Localization and Mapping for Solid-State LiDAR

2021-02-07 14:33:35
Han Wang, Chen Wang, Lihua Xie

Abstract

The LIght Detection And Ranging (LiDAR) sensor has become one of the most important perceptual devices due to its important role in simultaneous localization and mapping (SLAM). Existing SLAM methods are mainly developed for mechanical LiDAR sensors, which are often adopted by large scale robots. Recently, the solid-state LiDAR is introduced and becomes popular since it provides a cost-effective and lightweight solution for small scale robots. Compared to mechanical LiDAR, solid-state LiDAR sensors have higher update frequency and angular resolution, but also have smaller field of view (FoV), which is very challenging for existing LiDAR SLAM algorithms. Therefore, it is necessary to have a more robust and computationally efficient SLAM method for this new sensing device. To this end, we propose a new SLAM framework for solid-state LiDAR sensors, which involves feature extraction, odometry estimation, and probability map building. The proposed method is evaluated on a warehouse robot and a hand-held device. In the experiments, we demonstrate both the accuracy and efficiency of our method using an Intel L515 solid-state LiDAR. The results show that our method is able to provide precise localization and high quality mapping. We made the source codes public at \url{this https URL}.

Abstract (translated)

URL

https://arxiv.org/abs/2102.03800

PDF

https://arxiv.org/pdf/2102.03800.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot