Paper Reading AI Learner

Policy Augmentation: An Exploration Strategy for Faster Convergence of Deep Reinforcement Learning Algorithms

2021-02-10 03:51:45
Arash Mahyari

Abstract

Despite advancements in deep reinforcement learning algorithms, developing an effective exploration strategy is still an open problem. Most existing exploration strategies either are based on simple heuristics, or require the model of the environment, or train additional deep neural networks to generate imagination-augmented paths. In this paper, a revolutionary algorithm, called Policy Augmentation, is introduced. Policy Augmentation is based on a newly developed inductive matrix completion method. The proposed algorithm augments the values of unexplored state-action pairs, helping the agent take actions that will result in high-value returns while the agent is in the early episodes. Training deep reinforcement learning algorithms with high-value rollouts leads to the faster convergence of deep reinforcement learning algorithms. Our experiments show the superior performance of Policy Augmentation. The code can be found at: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2102.05249

PDF

https://arxiv.org/pdf/2102.05249.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot