Paper Reading AI Learner

The Barrier of meaning in archaeological data science

2021-02-11 17:24:45
Luca Casini, Marco Roccetti, Giovanni Delnevo, Nicolo' Marchetti, Valentina Orru'

Abstract

Archaeologists, like other scientists, are experiencing a data-flood in their discipline, fueled by a surge in computing power and devices that enable the creation, collection, storage and transfer of an increasingly complex (and large) amount of data, such as remotely sensed imagery from a multitude of sources. In this paper, we pose the preliminary question if this increasing availability of information actually needs new computerized techniques, and Artificial Intelligence methods, to make new and deeper understanding into archaeological problems. Simply said, while it is a fact that Deep Learning (DL) has become prevalent as a type of machine learning design inspired by the way humans learn, and utilized to perform automatic actions people might describe as intelligent, we want to anticipate, here, a discussion around the subject whether machines, trained following this procedure, can extrapolate, from archaeological data, concepts and meaning in the same way that humans would do. Even prior to getting to technical results, we will start our reflection with a very basic concept: Is a collection of satellite images with notable archaeological sites informative enough to instruct a DL machine to discover new archaeological sites, as well as other potential locations of interest? Further, what if similar results could be reached with less intelligent machines that learn by having people manually program them with rules? Finally: If with barrier of meaning we refer to the extent to which human-like understanding can be achieved by a machine, where should be posed that barrier in the archaeological data science?

Abstract (translated)

URL

https://arxiv.org/abs/2102.06022

PDF

https://arxiv.org/pdf/2102.06022.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot