Paper Reading AI Learner

Multi-Texture GAN: Exploring the Multi-Scale Texture Translation for Brain MR Images

2021-02-14 19:14:06
Xiaobin Hu

Abstract

Inter-scanner and inter-protocol discrepancy in MRI datasets are known to lead to significant quantification variability. Hence image-to-image or scanner-to-scanner translation is a crucial frontier in the area of medical image analysis with a lot of potential applications. Nonetheless, a significant percentage of existing algorithms cannot explicitly exploit and preserve texture details from target scanners and offers individual solutions towards specialized task-specific architectures. In this paper, we design a multi-scale texture transfer to enrich the reconstruction images with more details. Specifically, after calculating textural similarity, the multi-scale texture can adaptively transfer the texture information from target images or reference images to restored images. Different from the pixel-wise matching space as done by previous algorithms, we match texture features in a multi-scale scheme implemented in the neural space. The matching mechanism can exploit multi-scale neural transfer that encourages the model to grasp more semantic-related and lesion-related priors from the target or reference images. We evaluate our multi-scale texture GAN on three different tasks without any task-specific modifications: cross-protocol super-resolution of diffusion MRI, T1-Flair, and Flair-T2 modality translation. Our multi-texture GAN rehabilitates more high-resolution structures (i.e., edges and anatomy), texture (i.e., contrast and pixel intensities), and lesion information (i.e., tumor). The extensively quantitative and qualitative experiments demonstrate that our method achieves superior results in inter-protocol or inter-scanner translation over state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/2102.07225

PDF

https://arxiv.org/pdf/2102.07225.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot