Paper Reading AI Learner

Quartile-based Prediction of Event Types and Event Time in Business Processes using Deep Learning

2021-02-11 21:10:30
Ishwar Venugopal

Abstract

Deep learning models are now being increasingly used for predictive process mining tasks in business processes. Modern approaches have been successful in achieving better performance for different predictive tasks, as compared to traditional approaches. In this work, five different variants of a model involving a Graph Convolutional Layer and linear layers have been tested for the task of predicting the nature and timestamp of the next activity in a given process instance. We have introduced a new method for representing feature vectors for any individual event in a given process instance, taking into consideration the structure of Directly-follows process graphs generated from the corresponding datasets. The adjacency matrix of the process graphs generated has been used as input to a Graph Convolutional Network (GCN). Different model variants make use of variations in the representation of the adjacency matrix. The performance of all the model variants have been tested at different stages of a process, determined by quartiles estimated based on the number of events and the case duration. The results obtained from the experiments, significantly improves over the previously reported results for most of the individual tasks. Interestingly, it was observed that a linear Multi-Layer Perceptron (MLP) with dropout was able to outperform the GCN variants in both the prediction tasks. Using a quartile-based analysis, it was further observed that the other variants were able to perform better than MLP at individual quartiles in some of the tasks where the MLP had the best overall performance.

Abstract (translated)

URL

https://arxiv.org/abs/2102.07838

PDF

https://arxiv.org/pdf/2102.07838.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot