Paper Reading AI Learner

S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration

2021-02-17 18:59:28
Zhiqiang Shen, Zechun Liu, Jie Qin, Lei Huang, Kwang-Ting Cheng, Marios Savvides

Abstract

Previous studies dominantly target at self-supervised learning on real-valued networks and have achieved many promising results. However, on the more challenging binary neural networks (BNNs), this task has not yet been fully explored in the community. In this paper, we focus on this more difficult scenario: learning networks where both weights and activations are binary, meanwhile, without any human annotated labels. We observe that the commonly used contrastive objective is not satisfying on BNNs for competitive accuracy, since the backbone network contains relatively limited capacity and representation ability. Hence instead of directly applying existing self-supervised methods, which cause a severe decline in performance, we present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution, to minimize the loss and obtain desirable accuracy. Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.5~15% on BNNs. We further reveal that it is difficult for BNNs to recover the similar predictive distributions as real-valued models when training without labels. Thus, how to calibrate them is key to address the degradation in performance. Extensive experiments are conducted on the large-scale ImageNet and downstream datasets. Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods. Code will be made available.

Abstract (translated)

URL

https://arxiv.org/abs/2102.08946

PDF

https://arxiv.org/pdf/2102.08946.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot