Paper Reading AI Learner

Do Generative Models Know Disentanglement? Contrastive Learning is All You Need

2021-02-21 08:01:20
Xuanchi Ren, Tao Yang, Yuwang Wang, Wenjun Zeng

Abstract

Disentangled generative models are typically trained with an extra regularization term, which encourages the traversal of each latent factor to make a distinct and independent change at the cost of generation quality. When traversing the latent space of generative models trained without the disentanglement term, the generated samples show semantically meaningful change, raising the question: do generative models know disentanglement? We propose an unsupervised and model-agnostic method: Disentanglement via Contrast (DisCo) in the Variation Space. DisCo consists of: (i) a Navigator providing traversal directions in the latent space, and (ii) a $\Delta$-Contrastor composed of two shared-weight Encoders, which encode image pairs along these directions to disentangled representations respectively, and a difference operator to map the encoded representations to the Variation Space. We propose two more key techniques for DisCo: entropy-based domination loss to make the encoded representations more disentangled and the strategy of flipping hard negatives to address directions with the same semantic meaning. By optimizing the Navigator to discover disentangled directions in the latent space and Encoders to extract disentangled representations from images with Contrastive Learning, DisCo achieves the state-of-the-art disentanglement given pretrained non-disentangled generative models, including GAN, VAE, and Flow. Project page at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2102.10543

PDF

https://arxiv.org/pdf/2102.10543.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot